Rotational Linear Discriminant Analysis Using Bayes Rule for Dimensionality Reduction

نویسندگان

  • Alok Sharma
  • Kuldip K. Paliwal
چکیده

Linear discriminant analysis (LDA) finds an orientation that projects high dimensional feature vectors to reduced dimensional feature space in such a way that the overlapping between the classes in this feature space is minimum. This overlapping is usually finite and produces finite classification error which is further minimized by rotational LDA technique. This rotational LDA technique rotates the classes individually in the original feature space in a manner that enables further reduction of error. In this paper we present an extension of the rotational LDA technique by utilizing Bayes decision theory for class separation which improves the classification performance even further.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

A pairwise subspace projection method for multi-class linear dimension reduction

Linear feature extraction is commonly applied in an all-atonce way, meaning that a single trasformation is used for all the data regardless of the classes. Very good results can be achieved with this approach when the classification problem involves just a few classes. Nevertheless, when the number of classes grows is often difficult to find a low dimensional subspace while preserving the error...

متن کامل

FADA: An Efficient Dimension Reduction Scheme for Image Classification

This paper develops a novel and efficient dimension reduction scheme--Fast Adaptive Discriminant Analysis (FADA). FADA can find a good projection with adaptation to different sample distributions and discover the classification in the subspace with naïve Bayes classifier. FADA overcomes the high computational cost problem of current Adaptive Discriminant Analysis (ADA) and also alleviates the o...

متن کامل

A Multi Linear Discriminant Analysis Method Using a Subtraction Criteria

Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006